
Typecasting allows us to access
information that is stored as

one data type as if it were another
type. For example, if we have a
word variable (4 bytes), a typecast
would allow us to treat it as if it
were two bytes, or one byte, or
four bytes, or a pair of charac-
ters... Similarly, if an expression
evaluates to a long integer, a
typecast could be employed to
view the data as a pointer, or a
two-word record...

Let’s take one of these examples
and see how we can implement
typecasting and what the alterna-
tives are. Listing 1 is the unit for a
simple program with two buttons,
whose event handlers both do
essentially the same thing: they set
the colour of the form to a random
colour, obtained by using the
Windows API routine RGB. The
value of the Color property (which
is of type TColor, a VCL-defined
range of long integer values) is then
assigned to a local Longint variable
curiously called Tag, whose whole
value, and also its low and high
word values, are to be written to
the screen (see Figure 1).

In order to ensure the Random
routine does generate a truly

unit Coloursu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 LowLbl: TLabel;
 HighLbl: TLabel;
 WholeLbl: TLabel;
 procedure Button1Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);

var LoWord, HiWord, Tag: Longint;
begin
 Color := RGB(Random(256), Random(256), Random(256));
 Tag := Color;
 LoWord := Tag and $FFFF;
 HiWord := Tag shr 16;
 HighLbl.Caption := ’$’ + IntToHex(HiWord, 4);
 LowLbl.Caption := ’$’ + IntToHex(LoWord, 4);
 WholeLbl.Caption := ’$’ + IntToHex(Tag, 8);
end;

procedure TForm1.Button2Click(Sender: TObject);
var LoWord, HiWord, Tag: Longint;
begin
 Color := RGB(Random(256), Random(256), Random(256));
 Tag := Color;
 LoWord := Word(Tag);
 HiWord := LongRec(Tag).Hi;
 HighLbl.Caption := ’$’ + IntToHex(HiWord, 4);
 LowLbl.Caption := ’$’ + IntToHex(LoWord, 4);
 WholeLbl.Caption := ’$’ + IntToHex(Tag, 8);
end;
initialization
 Randomize;
end.

➤ Listing 1 (file COLOURSU.PAS on the disk)

pseudo-random sequence of
numbers, the on-line help tells us
to call Randomize before we call
Random. Randomize initialises the
seed used by the random number
generator with a value obtained
from the DOS Get Time interrupt
(interrupt $21, function $2C). We
could call Randomize as one of the
first actions in the project source
file before Application.Run, or in
the form’s OnCreate handler, but
here I have elected to put it in the
form unit initialisation section.

The initialisation code for all
units used in an application is
executed before the very first line
of the project source, so right at
the very start of the program.
You’ll note that this is marked by
the word initialization just
before the final end. of the unit.
This is a new keyword in Delphi,
but you can also use the historic
alternative of a begin in its place.
The online help heartily recom-
mends using initialization
instead, so it appears a little odd
that Borland use the old begin
approach in all the source they
supply in Delphi Client/Server.

The methods used to extract the
two words from the Longint are the

Typecasting Explained: Part 1
by Brian Long

points of interest here. The extrac-
tions performed by the first button,
labelled Old Way, don’t use
typecasting at all. They do it in the
fashion I was taught at college,
using good old-fashioned, down to
earth, no messing about, plain
bitwise manipulations. To get the
low word from a long integer, ie the
bottom 16 bits from a 32-bit value,
you perform a binary AND operation
between the long integer and 216-1,
or $FFFF – this strips off the top
word, leaving just the bottom
word. To get the high word, you
shift the value right by 16 bits, to
leave you with the desired value.

The second button obtains
exactly the same results, but avoid-
ing any bit operations. However, it
does tackle the problem from two
different angles. It uses two differ-
ent typecasts, one a value typecast,
used to get the low word, and one
a variable typecast, used to get the
high word.

The general format of a typecast
is to specify the new type that you
wish to get, followed by a pair of
parentheses surrounding the
original variable or expression.
Let’s look at the two typecasts in
turn.

30 The Delphi Magazine Issue 3

Value Typecasts
LoWord := Word(Tag);

The size of Tag, the original variable
used here, is four bytes. The size of
the target type, Word, is two bytes.
Because of the different sizes, this
is interpreted as a value typecast.
This means that before the
compiler worries about what you
are hoping to get out of the type-
cast, it evaluates the expression in
the brackets to produce a value. In
this case it is simply the value of a
variable, but you could easily sub-
stitute an arithmetic calculation.
Once a value is obtained, the com-
piler does what it can to treat it as
the desired type. If the target type
is smaller, as it is here, it merely
truncates the value, knocking off
any high bytes that aren’t needed,
so in this case we just get the low
word from Tag. If the target type is
bigger, it pads it out with zeros.
This form of value typecast is
implicitly performed by the
compiler when doing certain
operations. The following routine
has four assignments. The first two
do exactly the same thing. The
second two are also equivalent:

procedure DoAssign(WordVal:
 Word; LongVal: Longint);
var W: Word;
 L: Longint;
begin
 W := Word(LongVal);
 W := Val2;
 L := Longint(WordVal);
 L := Val1;
end;

Variable Typecasts
HiWord := LongRec(Tag).Hi;

What’s going on here is an interpre-
tation of Tag as if it were a record of
type LongRec as defined in the
SysUtils unit. LongRec is a two word
record specifically designed for
use in typecasting long integers.
Because we are attempting to
access a structure member of the
result of a typecast, in this case a
record field, the compiler sees this
as a variable typecast. It thereby
introduces a ruling that the type-
cast subject (Tag) must be a
variable, not an expression, and

that the target type (LongRec) is the
same size as the original type
(Longint). A LongRec is four bytes,
the same size as a Longint and so
the typecast succeeds and the high
word gets read.

The significance of the require-
ments that the typecast be against
a variable and the source and
target be the same size start to
become clear when you realise that
a variable typecast can be used on
the left hand side of an assignment.
So, for example, using the typecast
shown above, an equally valid
statement would be:

LongRec(Tag).Hi := 35;

which would write 35 into Tag’s
high word, leaving the low word
untouched. Unlike a value type-
cast, the compiler does not evalu-
ate Tag first, it generates code that
assumes Tag is indeed a LongRec.

The Tag variable wasn’t so
named by chance, as you perhaps
guessed: it was named the same as
a property of the form (and indeed
every other component type). The
form’s Tag property is a Longint, as
is our current Tag variable. We can
test the compiler’s typecasting
rules by temporarily deleting the
two Tag variables from the unit in
Listing 1, and trying to recompile.

You will notice that both the
old-fashioned extractions compile
fine with the Tag property, as does
the value typecast in the second
button’s OnClick event handler. On
a less successful note, the variable
typecast does not compile. A
property is not a variable, despite
the fact that it can be treated like
one, being assigned to and from. A
property is an expression.
Therefore, only value typecasts are
applicable to property values.

Common Uses Of Typecasting
You may well have come across
this issue before, if you’ve dabbled
with a third generation language.

Take the simple application in
Listing 2 (see Figure 2). Essentially
one form with three SpinEdit
controls from the standard page of
the component palette placed on
it. One of the spin edits (Res) is read
only, the other two (Op1 and Op2)
have one shared event handler
attached to both their OnChange
events. The scheme is that as you
type numbers into the latter two,
the read-only one displays the
result of multiplying the two num-
bers together. To bring the particu-
lar problem I wish to cover to light,
I have used some variables in the
implementation of the OnChange
event handler, OpChange.

There are two word variables
used to store the numbers from Op1
and Op2 (these spin edits’ values
are limited to 65535). The result of
the multiplication is stored in a
Longint variable and that variable
is then displayed in the Res spin
edit. When you run the program, if
you type 1000 into the first spin
edit and then 50 into the second,
the correct result of 50000 is shown
in Res. Increasing the number in Op2
keeps producing correct multipli-
cations as you go past 60, but when
you get to 66 it all falls apart,
despite having a long integer to
store the result in – the displayed
result is 464.

However, the problem is not
with the left hand side of the
assignment but the right hand side.
When Delphi’s expression parser

➤ Figure 1 Colour by numbers

➤ Figure 2 Not even running on a Pentium...

September 1995 The Delphi Magazine 31

evaluates the right hand side it
scans it to see what the type of the
largest individual part of it is. If
there is a bracketed part of the
expression, it recurses and
evaluates that first – a pair of brack-
ets mark one expression which
may then be part of another
expression. When it has identified
the largest type present, it stores
the intermediate result of the
expression in storage of that type’s
size. In our case, the compiler
places the result of the multiplica-
tion in a Word which is then
assigned to the Longint variable.

Obviously, when the calculation
produces a value greater than the
largest Word value (65535), the
value assigned ends up being just
the lowest word of the result. Were
we to have Arithmetic Overflow
Checking on (either by the {$Q+}
compiler directive, or Options |
Project | Compiler | Overflow
checking) we would be warned
about this at run-time when the
wraparound problem occurs.

To resolve this problem, we can
use a Longint value typecast on one
of the parts of the expression. It
would be fruitless to apply it to the
whole expression, as a value
typecast is only applied when the
expression has been evaluated,
and by then the truncation has
occurred. The following would be a
valid way around the problem:

Num3 := Longint(Num1) * Num2;

Incidentally, this parser operation
is not a bug; the same problem
occurs in C and C++ compilers (at
least, those that I have used).

Let’s look at another example
now, one using some elementary
graphics by way of the TShape
component. Listing 3 shows such
an example. The intention is to
draw a random shape on the form
whenever a key is pressed. The
width and height of the shape are
random – that’s easy enough. The
colour is also random, we did that
earlier. But how do we get a
random shape to be drawn?

Bear in mind that a TShape’s
shape is determined by its Shape
property. This property is defined
in the on-line help to be of type

unit Shapesu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, ExtCtrls, StdCtrls;
type
 TForm1 = class(TForm)
 procedure FormKeyPress(Sender: TObject; var Key: Char);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}

procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin { The variable with no name! }
 with TShape.Create(Self) do begin
 Left := 0;
 Top := 0;
 Width := Random(Self.ClientWidth);
 Height := Random(Self.ClientHeight);
 Brush.Color := RGB(Random(256), Random(256), Random(256));
 Shape := TShapeType(Random(6));
 Parent := Self;
 end;
 Key := #0; { Null the key to prevent any further key-press processing }
end;
initialization
 Randomize; { For Random to be truly random }
end.

➤ Listing 3 (file SHAPESU.PAS on the disk)

unit Mathsu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, Spin;
type
 TForm1 = class(TForm)
 Op1: TSpinEdit;
 Op2: TSpinEdit;
 Res: TSpinEdit;
 Label1: TLabel;
 Label2: TLabel;
 procedure OpChange(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}

procedure TForm1.OpChange(Sender: TObject);
var Num1, Num2: Word;
 Num3: Longint;
begin
 if (Op1.Text = ’’) or (Op2.Text = ’’) then Exit;
 Num1 := Op1.Value;
 Num2 := Op2.Value;
 Num3 := Num1 * Num2;
 Res.Value := Num3;
end;
end.

➤ Listing 2 (file MATHSU.PAS on the disk)

TShapeType, which is an enumer-
ated type which can take one of six
values: stRectangle, stSquare,
stRoundRect, stRoundSquare,
stEllipse or stCircle. How do we
effectively pick a random value
from an enumerated type?

We can achieve our goal by
taking advantage of a useful
implementation detail. When the
compiler generates an executable,

an enumerated type’s values boil
down to being represented by
sequential numbers starting at
zero. So stRectangle would be 0 and
stCircle would be 5. Given an
understanding of this point, we can
generate a random number
between 0 and 5 and apply a value
typecast to it to turn it into a
TShapeType, and the compiler lets it
through, as is done in the listing.

32 The Delphi Magazine Issue 3

One of the more common uses of
typecasts is in finding the segment
and offset values of a pointer.
Where it used to be common to use
the Seg and Ofs functions under
DOS, they aren’t really reliable un-
der Windows and so typecasts
tend to be used instead. Let’s have
a quick look at Seg and Ofs and see
what the problem is. These func-
tions return the segment and offset
of the thing passed to them, so
given a Word variable called W, we
could say:

Segment := Seg(W);
Offset := Ofs(W);

This returns the segment and
offset parts of the address of W, ie
its storage location. But given a
pointer P instead, we can’t get its
constituent segment and offset
using:

Segment := Seg(P);
Offset := Ofs(P);

because that gives us the segment
and offset of the address of P, ie the

place where P is stored, and not P
itself. To get Seg and Ofs to return
the required data, we need:

Segment := Seg(P^);
Offset := Ofs(P^);

This gives us the segment and
offset of the address of the thing
pointed to by P. But as I mentioned,
this is not reliable in Windows. The
two instructions above cause a
pointer load at machine level. In
protected mode, the CPU checks
each pointer load to ensure the
pointer is valid, or at least that its
segment is. If P is not a valid
pointer, a General Protection Fault
will be generated. I tried this with a
randomly chosen pointer value of
$9999:$999 and got one.

In protected mode, the preferred
approach to finding the segment
and offset of a pointer is to apply a
variable typecast to the pointer us-
ing the PtrRec record defined in Sy-
sUtils:

Segment := PtrRec(P).Seg;
Offset := PtrRec(P).Ofs;

To Be Continued...
In the next issue we’ll continue by
looking at typecasting objects and
also delve a little into assembler!

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

A note from the Editor...
For more information on allocat-
ing and using selectors, and also
on a wide range of subjects includ-
ing the Pascal expression parser,
typecasting, direct memory access
etc (some of which are to be
covered in Part 2 of this article),
see The Borland Pascal Problem
Solver by Brian Long, published
in 1994 by Addison-Wesley, ISBN
0-201-59383-1. Admittedly, it was
written with Borland Pascal in
mind, but many of the concepts
and ideas transfer readily across. I
can recommend it.

	Value Typecasts
	Variable Typecasts
	Common Uses of Typecasting
	To be Continued.....

